Ana içerik
Geometri
Konu: Geometri > Ünite 2
Ders 2: Dönüşümlerin Özellikleri ve TanımlarıDöndürmeleri Kesin Olarak Tanımlayalım
Bir öğrenciyle bir öğretmenin döndürmeleri mümkün olduğunca net şekilde tanımlamaya çalıştıkları bir diyaloğu okumak ister misiniz?
Aşağıdaki diyalog, bir öğretmenle öğrenci arasında geçmektedir. Hedefleri, kesin matematiksel dil kullanarak döndürmeleri tanımlamaktır. Göreceğiniz gibi, öğrencinin tanımı daha kesinleştirmek için birkaç kere gözden geçirmesi gerekecektir. İyi eğlenceler!
Öğretmen:
Bugün döndürmelerin neler yaptığını genel bir şekilde tanımlamaya çalışacağız.
Diyelim ki, noktası etrafında derecelik bir döndürmemiz var. Bu döndürmenin başka bir noktası etrafında etkisini nasıl tanımlarsınız?
Öğrenci:
Ne demek istiyorsunuz? Hakkında hiçir şey bilmezsem, döndürmenin 'ya ne yaptığını nasıl bilebilirim?
Öğretmen:
Bu döndürme hakkında bilginiz olmadığı doğru, ama tüm döndürmeler benzer şeyler yaparla. 'nın döndürmeye ne yaptığını tanımlamanın bir yolunu düşünebilir misiniz?
Öğrenci:
Hmmmm... Düşüneyim... Sanırım , 'ye göre farklı bir yöne hareket eder. Örneğin, eğer 'nin sağında olsaydı, belki şimdi 'nin üstündedir veya öyle bir şey. Bu, 'nın ne kadar büyük olduğuna bağlıdır.
Öğretmen:
Güzel. Söylediğinizi aşağıdaki şekilde tanımlayabilirsiniz:
Döndürmenin noktasını noktasıyla eşleştirdiğini varsayın, bu durumda ve doğru parçaları arasındaki açı 'dır.
Öğrenci:
Evet, bu tanıma katılıyorum.
Öğretmen:
Ancak, matematikte çok kesin olmamız gerektiğini unutmayın. 'ya eşit bir açısı oluşturmanın sadece bir yolu mu vardır?
Öğrenci:
Bir bakalım... Hayır, böyle bir açı oluşturmanın iki yolu avrdır: saat yönünde ve saat yönünün tersi.
Öğretmen:
Doğru! Döndürmeler saat yönünün tersine uygulanmalıdır, ve tanımımız şunu farketmelidir:
Elbette, negatif bir ölçü olarak verildiyse, döndürme ters yöndedir, yani saat yönündedir.
Öğrenci:
Şahane. İşimiz bitti mi?
Öğretmen:
Siz bana söyleyin. Tanım 'nın nereyle eşleştiğini tamamen açık olarak göstermelidir. Başka bir deyişle, tanımına uyan sadece bir nokta olmalıdır.
Öğrenci:
Sanırım öyle... Bir saniye! Hayır! Bu açıyı yaratan pek çok nokta var! 'den 'ye doğru gelen ışın üstündeki her noktanın ile açısı 'dır.
Öğretmen:
İyi gözlem! Tanımımızı iyileştirmek için aklınıza gelen bir yol var mı?
Öğrenci:
Evet, açının 'ya eşit olmasına ek olarak, 'den uzaklık da aynı kalmalıdır. Sanırım bunu matematiksel olarak şeklinde tanımlayabilirsiniz.
Öğretmen:
Aferin! Yaptıklarımınız aşağıdaki tanımda özetleyebiliriz:
Öğrenci:
Vay, işte bu çok kesin oldu!
Öğretmen:
Gerçekten. Bonus olarak, size döndürmeleri tanımlamanın farklı bir yolunu göstereyim:
Öğrenci:
Evet, bu da işe yarar çünkü çember üstündeki tüm noktalar merkezden aynı uzaklıktadır.
Öğretmen:
Bu doğru! Bu iki tanım arasındaki esas fark, birincinin doğru parçalarını ve ikincinin çemberi kullanmasıdır.
Öğrenci:
Şahane. Bu kadar mı?
Öğretmen:
Evet. Sanıyorum döndürmeleri elimizden geldiğince kesin tanımladık.
Tartışmaya katılmak ister misiniz?
Henüz gönderi yok.