If you're seeing this message, it means we're having trouble loading external resources on our website.

Bağlandığınız bilgisayar bir web filtresi kullanıyorsa, *.kastatic.org ve *.kasandbox.org adreslerinin engellerini kaldırmayı unutmayın.

Ana içerik

Çözümlü Örnek: Rasyonel ve İrrasyonel İfadeler

Sal Khan, aşağıdaki ifadelerin rasyonel mi yoksa irrasyonel mi olduğunu nasıl belirleyebileceğimizi gösteriyor: 9 + √(45), √(45)/ (3*√(5)), ve 3*√(9). Orijinal video Sal Khan tarafından hazırlanmıştır.

Video açıklaması

Burada verilen ifadelerin sonuçlarının rasyonel mi yoksa irrasyonel mi olduğunu bulmamız istenmiş Soruya geçmeden önce rasyonel sayının ne olduğunu bir hatırlayalım Rasyonel sayı, Mesela, x rasyonel bir sayı olsun, X, bir rasyonel sayı olsun... Rasyonel bir sayı olabilmesi için x, iki tamsayının birbirine oranı olarak ifade edilebilmeli. Burada olduğu gibi, m ve n iki tamsayı ise, X, M bölü N’ye eşit olabilir. Ama elimizde irrasyonel bir sayı varsa, bu eşitlikten bahsedemeyiz. Evet, rasyonel sayının ne olduğunu hatırladığımıza göre, hafızamızı tazelediğimize göre, şimdi soruya geçelim. 9 rasyonel bir sayıdır. 9’u, 9 bölü 1, 18 bölü 2, Ya da 27 bölü 3 olarak, Yani iki tam sayının birbirine oranı olarak ifade edebiliriz. Peki, 45’in karekökü hakkında ne düşünüyorsunuz? 45’in karekökünü, 9 ve 5’in çarpımının karekökü olarak yazabiliriz değil mi? Ya da, 9’un karekökü çarpı 5’in karekökü. Peki, bunun sonucu ne olur? 9’un karekökü 3’tür. O halde, 3 çarpı 5’in karekökü Bununla birlikte, bu ifade, 9 artı 3 karekök 5 halini alır. Şimdi bu ifadeyi inceleyelim. 5’in karekökü irrasyoneldir. 3 rasyonel bir sayı olmasına rağmen, rasyonel bir sayının irrasyonel bir sayı ile çarpımı irrasyonel bir sayı verir. Aynen burada olduğu gibi, 3 çarpı 5’in karekökü! Son olarak irrasyonel bir sayı ile rasyonel bir sayıyı topluyoruz, değil mi ? Toplam yine irrasyonel olacaktır. O zaman birinci ifade irrasyoneldir diyebiliriz. Şimdi bu ifadeye geçelim, bakalım burada ne varmış? 45’in karekökünü az önce yazdığımız az önce yazdığımız şekilde yeniden yazabiliriz. Yani karekök içinde 9 çarpı 5. Payda ise 3 karekök 5. Sadeleştirmeye devam edelim ve payı, 9’un karekökü çarpı 5’in karekökü olarak yazalım. Pay, yine aynı. Bu, 3 karekök 5 bölü 3 karekök 5’e eşit olur! Bu bölme işleminin sonucu 1’dir! Ve 1 kesinlikle rasyonel bir sayıdır, öyle değil mi? Çünkü 1, 1 bölü 1 2 bölü 2, 3 bölü 3 şeklinde ifade edilebilir. O halde bu ifade rasyonel bir ifadedir diyebiliriz Ve sıra son ifadeye geldi. Burada 3 çarpı 9’un karekökü var. Peki 9 !un karekökü nedir ? 3 O halde, bu ifadeyi 3 çarpı 3 olarak yeniden yazabilirim. O halde 9, az öncede bahsettiğimiz gibi rasyonel bir sayıdır, Çünkü 9’u 9 bölü 1, 27 bölü 3, Veya 45 bölü 5 olarak ifade edebilirim. Kesinlikle rasyonel bir sayı