Ana içerik
Çok Değişkenli Kalkülüs
Konu: Çok Değişkenli Kalkülüs > Ünite 4
Ders 4: Vektör Alanlarının Çizgi İntegralleri (Makaleler)Bir eğrinin birim normal vektörünü oluşturma
İki boyutta bir eğri verildiğinde, bu eğrinin birim normal vektörlerini veren bir fonksiyonu nasıl bulursunuz?
Neye ulaşıyoruz
- İki boyutlu bir eğrinin birim normal vektörü, büyüklüğü
olan ve bu eğriye bir noktada dik olan bir vektördür. - Genelde, size sadece bir vektörü değil, verilen bir eğrinin tüm olası birim normal vektörlerini veren bir fonksiyon ararsınız.
- İki boyutlu bir eğrinin birim normal vektörünü bulmak için aşağıdaki adımları izleyin:
- Teğet vektörü bulun; bu, eğriyi tanımlayan parametrik fonksiyonun türevini almanızı gerektirir.
- Bu teğet vektörü
döndürün; bu, koordinatları değiştirmeyi ve bunlardan birisini negatif yapmayı gerektirir. - Sonucu normalleştirin; bu, bunu kendi büyüklüğüyle bölmeyi gerektirir.
- Bu teğet vektörü
- Teğet vektörü bulun; bu, eğriyi tanımlayan parametrik fonksiyonun türevini almanızı gerektirir.
- Soyut şekilde konuşursak, elde edeceğiniz sonuç buna benzer gözükecektir:Eğri boyunca küçük bir adım için,
'i bu adımın bileşeni, 'yi bu adımın bileşeni ve 'yi bu adımın uzunluğu olarak düşünün.
Örnek: Bir sinüs eğrisine normal vektörler
Bu eğriye birim normal vektörler veren bir fonksiyon istediğinizi varsayalım (belki bundaki akıyı hesaplamak istiyorsunuz). Başka şekilde ifade edersek, eğrinin üstündeki her nokta için, bu eğriye dik olan büyüklükte bir vektörün koordinatlarını verebilmek istiyorsunuz.
Bu eğrinin üstündeki herhangi bir noktayı alabilen ve eğriye o noktada dik olan büyüklükte bir vektör veren bir ifade istediğiniz anlamını taşır.
Adım 0: Parametrelerle tanımlayın
Her şeyden önce, eğrimizin parametrik formda olduğundan emin olmalıyız. Bir fonksiyon grafiğini, parametrik bir fonksiyona dönüştürmek oldukça basittir. parametresinin rolünü oynamasına izin veririz:
Bu adımı "Adım " olarak adlandırıyorum, zira genelde eğriniz başlangıçta parametrik olarak tanımlanmıştır ve dolayısıyla bu size hazır verilmektedir.
Bunun birim normal vektörümüz için anlamı, gene 'yi alan, ancak sinüs eğrisinin üstünde noktalar vermek yerine, çıktıları eğriye noktasında normal olan birim vektörler veren ikinci bir vektör değerli fonksiyon bulacak olmamızdır.
Adım 1: Bir teğet vektör bulun
Bir parametrik fonksiyonun türevini aldığınızda, bu size eğriye teğet bir vektör verir:
Eğer bu konu sizin için yabancıysa, vektör değerli fonksiyonların türevleri makalesini gözden geçirebilirsiniz.
Örneğimizde, o bu şekilde gözükür:
Örneğin, eğer bu fonksiyona koyarsanız, aşağıdaki vektörü elde edersiniz:
Bu vektörü kuyruğu noktasında olacak şekilde hareket ettirirseniz, bu bizim sinüs eğrimiz için 'dır, bu eğriye teğet olacaktır.
Adım 2: Bu vektörü döndürün
Bir teğet vektörü bir normal vektöre çevirmek için, bunu döndürün. Bunu nasıl yaparsınız? İki bileşenin yerini değiştirin ve bunlardan birisini negatif yapın:
Hangi bileşeni negatif yapacağınızı nasıl seçersiniz? Eğer saat yönünün tersine döndürüyorsanız ilk bileşeni negatif yapın; eğer saat yönünde döndürüyorsanız ikinci bileşeni negatif yapın.
Örneğimizde, yukarıyı göstermesi için birim teğet vektörü saat yönünün tersine döndürelim:
Adım 3: Büyüklüğünü olarak ölçekleyin
Harika! Normal bir vektörümüz var. Ancak bunu bir birim normal vektör yapmak için, bunu kendi büyüklüğüyle bölmeliyiz. Örneğimizde, büyüklük aşağıdaki gibidir:
Buna göre, birim normal vektör fonksiyonumuz böyle gözükür:
Özet
Herhangi bir parametrik eğriye nasıl uygulandıklarını görmek için, bu örneğin adımlarını genelleştirelim.
- Adım 0: Bu eğrinin parametrelerle verilmiş olduğundan emin olun
- Adım 1: Parametrik fonksiyonun türevini alarak eğrinize teğet olan bir vektör bulun:
- Adım 2: Koordinatlarını değiştirerek ve birisini negatif yaparak, bu vektörü
döndürün. - Adım 3: Bunu bir birim vektör yapmak için, bunu büyüklüğüyle bölün:
Eğer arzu ederseniz, bunu diferansiyeller cinsinden düşünebilirsiniz, eğri boyunca küçük bir adım ile temsil edilir. Bu küçük adımın büyüklüğü dir. Bu terminolojide, birim normal vektörü aşağıdaki gibi yazabilirsiniz:
Tartışmaya katılmak ister misiniz?
Henüz gönderi yok.